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A system consists of a bearing solid and a circular viscoelastic membrane attached to the solid along its 

contour. The system in the undeformed state is dynamically symmetrical about an axis orthogonal to the 

plane of the membrane. The motion of this system on a circular orbit in a central Newtonian gravitational 

field is investigated within the limits of linear elasticity theory. Quasistatic motions of the system are 

considered, on the assumption that the membrane is sufficiently stiff and the dissipative forces are small 

compared with the elastic forces. A particular motion is found in which the plane of the membrane lies 

parallel to the orbital plane and the system revolves on its axis of symmetry, at a fixed angular velocity of 

arbitrary magnitude. The stability of this motion is examined. It is shown that, compared with the parallel 

resuIts for a s~met~~i satellite-solid system, the presence of the viscoelastic membrane makes the 

stability regions smaller and implies the existence of asymptotic stability with respect to part of the 

variables. 

1. LET us consider a system consisting of a bearing solid and a circular viscoelastic membrane 
attached to the solid along its contour. The axis of s~metry of the membrane is one of the principal 
central axes of inertia of the system in the undeformed state and is also an axis of dynamical 
symmetry for the system. 

We shall assume that the system is moving in a central Newtonian gravitational field in a circular 
orbit and that its motion around its centre of mass does not affect the motion of the centre of mass 
itself. 

Let OxIyIzl and Gxyt be two coordinate frames, with their origins at the centre of mass 0 of the 
undeformed system and the centre of mass G of the deformed system, respectively; the axes are 
directed along and parallel to the principal central axes of inertia in the undeformed state. The z1 
axis coincides with the axis of symmetry of the membrane. 

Treatment of the system (solid plus membrane) using linear elasticity theory yields [l] a system of 
equations that is valid for any inertia tensor. Those of the equations that describe the motion of the 
system as a whole about its centre of mass (the equations of motion of the trihedron Gxyz), 
assuming dynamical symmetry, are as follows (throughout, summation is performed from m = 1 to 
m= 43): 

bl6Jl’ + (C - A)w*o, - 30,~ (C - A)y,y,l + 22 2 bmqm,,’ x 

x 1611’ - ozos + 3w02y2y31 + %OI 2 bmqmo” + 

+ x w&n1’ I-(OS’ - w@z”+ 3w@2ynel + x &r&n~‘~ + 

+ 2 &$.jrn~~ [(CO&? - w,2) - 34 (y: - Q)l = 0 (1-l) 
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- 

0 (1.3) 

Here A and C are the moments of inertia of the undeformed system relative to the axes O,r and 
Ozr ; ml, w2, o3 and y1 , y2, y3 are the projections on the Gx, Gy, Gz axes of the absolute angular 
velocity u of the trihedron Gxyz and the unit vector y along the radius-vector of the centre of mass 
G relative to the attracting centre; o. is the mean motion of the centre of mass on the orbit. The 
generalized coordinates qmo’, qml’, qmln (m = 1, 2, . . .) were described in [l]. The coefficients a, 
and b, are evaluated from the formulas 

a 

a m = mJC,l s 11 Nd p2 dp, b,=Bnc&&&ap)pdp (m=1,2,...) 
0 0 

where a is the radius of the membrane and u is its surface density, 1, (k,, p) is the Bessel function of 
nth order, the parameter I&, is the mth root of the equation Jn(ka) = 0, and the quantities c,, are 
defined by c,, = (~~a_LJ,‘~(k,,a)/2)~“” (n = 0, 1; m = 1, 2, . . .). The letter I in (1.1) and (1.2) 
denotes the distance from the centre of mass 0 to the centre of the undeformed membrane. 

2. We will consider quasistatic motions of the system [2, 31, in which the elastic vibrations of the 
membrane are forced ones excited by the gravitational and inertial forces. Let us assume that the 
ch~acteristic duping time of the free elastic vibrations of the membrane is much greater than the 
characteristic period of the elastic vibrations, but much Iess than the period To of one revolution of 
the centre of mass on the orbit. Under these assumptions, the values of the generalized coordinates 

%0°, qml', %l'l (m = 192, * . .I are calculated by the following formulas [ 11: 

4 m* = -+&- 2$Q’mn] + 0 (8) (n = 0,1; m = 1,2,. * * .) 
mn 
Q mO' s b,Z lol” + 02’ - <ito2 (1 - 3y,2)1 

Q ml' = am [Qz' - Qha3 -I-, 3002Y,Y,l (2.1) 

Q n- w - --am [WI' -4- O&3 - 3002~3y~l 

Here E = w/Q1 is a small parameter (we have assumed that To- l), Sz, is the least natural 
frequency of elastic vibrations of the membrane and x is a dimensionless parameter and b is the 
positive constant appearing in the Rayleigh dissipative function [l]. By virtue of our assumptions, 
the parameters E and x satisfy the inequalities 0~x4 F 4 1; in deriving (2.1) we assumed that 
x - E”+‘(O< 6< 1). The quantity Am,, in (2.1) is given by A,,, = E-* w,, , where o,, is the 
corresponding natural frequency of elastic vibrations of the membrane; the latter is related to the 
parameter kmn by o, = ak,, (n = 0,l; m = 1,2, . . .). 

3. We will now introduce an orbital coordinate frame GXYZ, whose axes GX, GY and GZ are 
directed, respectively, along the transversal to the orbit, the binormal and the radius-vector of the 
centre of mass G relative to the attracting centre. The orientation of the frame Gxyz relative to 
GXYZ is specified in terms of Euler angles 9, B,cp. 

We put o1 = wop, o2 = 004, o3 = wop in Eqs (l.l)-(1.3), introduce a parameter 01= C/A and 
transform to a new independent variable 7 = wet. Using the kinematic relations (the dot, as before, 
denotes differentiation with respect to the independent variable) 

Yr = sin v sin 0, yz = cos rp sin 0, Y9 = cos 0 

p = 9’ sin e sin cp + 0’ cos cp + sin $ cos cp + cos I/J sin cp cos e 

4 = *’ sin 8 eos q - 8’ sin v, - sin 9 sin cp + cos 9 eos cp co9 e (3.1) 
$ =- 9’ cos 0 + cp’ - cos II, sin e 
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we can write Eqs (l.l)-(1.3) in terms of the Euler angles. Multiplying the first of the resulting 
equations by sincp, the second by coscp and adding, then multiplying the first equation by cos(p, the 
second by -sincp and adding, and retaining the third equation unchanged, we obtain the following 
system of equations: 

(1 +~PJ[+” sin 8 + Zg’tl* co.5 8 - 8’Z4 - 1, sin $1 -- 

- (a - 1 - p&31, + P,‘Z, - pz** + PI (-pm $- 111,) + 

+ p, (-6” + 3 cos” 8 + 112) = 0 

(1 + P,)[e** --qP sin 8 cos 0 + q1’1, sin 8 + I, cos * cos ei + 
+ (a - 1 - P,)(bZ, - 3 sin 8 cos e) + P,‘tI f PI** + 

+ p1 (62 - 3 cos 28 - ~~2) -- p2 ~3’ + zlz,) = 0 

l3’ +- P, (PI? - 3 sin 0 cos e) - Plt, - 2 (P1*Z2 + P,*lJla = 0 

E, = 8’ + sin -+, I, = ,$’ sin 8 + cos ‘Ic, cos 8, I, = /3 + cos 4) sin 0 

I, = 2, + cos 9 sin 8, P, = 21 2 b,q,,‘lA 

PI = z (6nqrnl sin cp + qn,lN cos cp)lA, P, = 2 (umqml’ cos cp - q,,,; sin cp)/A. 

p,* = ~(%dhI~’ sin cp + qml”’ cos cp)lA, P,* - 2 (umqml” cos cp - 

- qmI”’ sin cp)/A 

PI** = ~((a,q,,,,“’ sin cp + q,,,L*” cos cp)lA, P2** = x(u,,,qm[’ cos cp - 

- Qrnl '*(I sin cp)lA 

(3.2) 

Inserting the values of the generalized coordinates qmo’, qml’, qml” (i = 1,2, . . .) from (2.1) and the 
corresponding values of their derivatives, we obtain equations describing the motion of the “body 
plus membrane” system as a whole relative to its centre of mass. Henceforth we shall ignore 
quantities of the order of &4 and higher in these equations. 

Using the expressions 

(lmll’ = b,,,lt.o~ [I#‘~ sin* 0 + Wa $- 2g’ sin 8 cos 8 cos $ + 20’ sing - 
- cOsa q3 sin* 8 + 3 cOsa ei 

qkI sin cp + qkl cos cp = 
u,oo’ (2 - a) e* 

%I 
((3 sin 8 cos 8 - &) + 

+ 2co,,Xb [pa (a - 1) I, - 38’ cos 281) (3.3) 
l 

l . 
Qmi COS Cp - Qml sin Cp = 

amoo* (2 - a) e* 

%I1 

{- pzl + 20,Xb 138 (a - 2) sin 8 cos e- 

-/3a(a- 1) I, + 3 sin 8 cos 8 (q* cos 8 - cos $ sin 0)]} 

which are obtained from (2.1), (3.1) and Eqs (3.2) (after the above-mentioned substitution) by 
setting E = 0, and by differentiating one can show that the left-hand sides of Eqs (3.2) do not involve 
the angle cp. 

4. It follows from (2.1), (3.2) and (3.3) that the equations of motion of the system as a whole 
admit of a particular solution in quasistatic motion: 

* = n, 8 = n/2, p = B0 = const (4.1) 

corresponding to motion of the system when the plane of the membrane is parallel to the orbital 
plane, and the system revolves uniformly on the axis of symmetry of the membrane at an angular 
velocity of arbitrary magnitude. 
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FIG. 1. 

We will now investigate the stability of this particular solution with respect to perturbations of +, 
8, IJJ’, Cl’, p, setting $= n+xi, 8 =IT/~++, l3 = pO+xg. The characteristic equation of the 
linearized system of equations (3.2) obtained by (3.3) may be written as 

h (a&4 $- aJ.3 $- a.,?? + a3h + u4) = 0 

a, = 1 + 0 (G), us = azg2 - asp + 3a - 1 + 0 (E2) 

a4 = (ap - 1) (a/?~ + 3a - 4) + 0 (s2) 

(4.2) 

a, = Lb,, a, = Lb,, L = 2x,bo,” (2 - a&IA > 0 

bl = 2 (a - l)B” + 3 (2 - a)[(a + l)fl” - Z/3 + 31 

b3 = 2 (a + 2)p” - 6 (4 - a)p” + 3 (3 - a)(a + 2)/3” + 3 (2 -- a)~ 

X (3a - 2)fi - 9 (2 - a), x1 = x um2/hm12 

This equation has one zero root and two pairs of complex-conjugate roots. 
In the case of the symmetric satellite-a rigid body (E = 0), the plane of the parameters (a, p) 

contains two regions (see Fig. 1) A and B in which the complex roots of Eq. (4.2) are purely 
imaginary. These regions are bounded by the curves al3 = 1, al3 + 3a- 4 = 0, 
A = (a” p2 - 2al3 + 3a - 1)2 - 4(c& - l)(c$ + 3a - 4) = 0 represented in Fig. 1 by solid lines, defined 
by the following systems of inequalities: ap>l, ++3a-4>0, A>0 for A and ap<l, 
al3 + 3cx - 4 < 0, A > 0 for B. As shown by investigations of the corresponding non-linear problem 
[4-6], the above particular solution is stable in the region A; it is also stable in B everywhere except 
along two segments of the fourth-order resonance curve and possibly one additional point of the 
region. Outside the regions A and B the characteristic equation (4.2) (with E = 0) has a pair of roots 
with positive real parts and the solution (4.1) is unstable. 

At small but non-zero values of E, Eq. (4.2) will again have a pair of roots with positive real parts 
outside A and B, and the solution (4.1) is unstable. We will now consider the stability question in 
the regions A and B. 

Analysing the structure of equations (3.2) with due attention to (2.1), (3.3), one can show that the 
critical case occurring here is singular [7], so that the Lyapunov-Malkin theorem is applicable. If the 
conditions of the Routh-Hurwitz criterion 

h, > 0. h:, > 0, 

b:, (b,a, -- nob,) - a,b,* > 0 (4.3) 

are satisfied, the real parts of the complex roots of Eq. (4.2) are negative and the solution (4.1) will 
be stable with respect to the variables +, 8, +‘, 0’, p, for sufficiently small E; it will be asymptotically 
stable with respect to the variables JI, 8, +‘, 8’. 
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Computer investigation of inequalities (4.3) in the regions A and B yielded the stability regions 
shown hatched in the figure. 

The curve in A that separates the stability and instability regions intersects the hyperbola @3 + 3a - 4 = 0 at 
the point 1 with coordinates (0.7335, 2.4533) and has a cusp 2 (1,2), a vertical tangent at the point 3 (0.9714, 
2.4457) and a vertical asymptote a = 1 as p + +a. The curve bounding the stability region in B also has a 
vertical asymptote OL = 1 as p-, -00; it intersects the hyperbola @3+3a-4 = 0 at the point 4 (1.5846, 
-0.4757), touches the curve A = 0 at the point 5 (0.8235, -1.2313) and has a vertical tangent at the point 6 
(0.8047, -1.439). Near the boundary cx = 2 of the regions A and B there are small regions of instability in a 
neighbourhood of the curves o$ = 1 and c$ + 3a - 4 = 0. The coordinates of their characteristic points, shown 
in the figure, are as follows: 7 (2, 1); 8 (1.9529, 0.5121); 9 (1.9737, -0.9733); 10 (2, -1.1083). 
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